Mean Curvature of Riemannian Immersions

نویسنده

  • T. J. WILLMORE
چکیده

1. Let M and M' denote complete riemannian manifolds of dimension n and m respectively, and suppose that M is compact and oriented. For simplicity we assume that both manifolds and their metrics are smooth (i.e. of class C). In terms of local co-ordinates (x, x, ...,x") on M and local co-ordinates (y,y, •••,/") on M', the riemannian metrics are written ds = gtJ dx l dx, ds' = g'aP dy* dy * where Roman suffixes take values 1,2, ..., n and Greek suffixes take values 1,2,..., m. Let/: M ->• M' be a smooth map. Following Eells and Sampson [1], we associate with / a real number called its energy. We define an inner product on the space of 2-covariant tensors at P £ M in terms of local co-ordinates by

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Short Survey on Biharmonic Maps between Riemannian Manifolds

and the corresponding Euler-Lagrange equation is H = 0, where H is the mean curvature vector field. If φ : (M, g) → (N, h) is a Riemannian immersion, then it is a critical point of the bienergy in C∞(M,N) if and only if it is a minimal immersion [26]. Thus, in order to study minimal immersions one can look at harmonic Riemannian immersions. A natural generalization of harmonic maps and minimal ...

متن کامل

Riemannian DNA, Inequalities and Their Applications

The main purpose of this survey article is to present the new type of Riemannian curvature invariants (Riemannian DNA) and the sharp inequalities, involving these invariants and the squared mean curvature, originally introduced and established in [7,8]. These Riemannian DNA affect the behavior in general of the Riemannian manifold and they have several interesting connections to several areas o...

متن کامل

Isometric Immersions without Positive Ricci Curvature

In this note we study isometric immersions of Riemannian manifolds with positive Ricci curvature into an Euclidean space.

متن کامل

A Loop Group Formulation for Constant Curvature Submanifolds of Pseudo-euclidean Space

We give a loop group formulation for the problem of isometric immersions with flat normal bundle of a simply connected pseudo-Riemannian manifold M c,r, of dimension m, constant sectional curvature c 6= 0, and signature r, into the pseudo-Euclidean space R s , of signature s ≥ r. In fact these immersions are obtained canonically from the loop group maps corresponding to isometric immersions of ...

متن کامل

Spacelike hypersurfaces in Riemannian or Lorentzian space forms satisfying L_k(x)=Ax+b

We study connected orientable spacelike hypersurfaces $x:M^{n}rightarrowM_q^{n+1}(c)$, isometrically immersed into the Riemannian or Lorentzian space form of curvature $c=-1,0,1$, and index $q=0,1$, satisfying the condition $~L_kx=Ax+b$,~ where $L_k$ is the $textit{linearized operator}$ of the $(k+1)$-th mean curvature $H_{k+1}$ of the hypersurface for a fixed integer $0leq k

متن کامل

ACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE

A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006